
Adding a Fundamental Type for N-bit
integers
Committee: ISO/IEC JTC1 SC22 WG14

Document Number: N2763

Date: 2021-06-21

Revises document number: N2709

Authors: Aaron Ballman, Melanie Blower, Tommy Hoffner, Erich Keane

Reply to: Aaron.Ballman@intel.com, Melanie.Blower@intel.com,

 thoffner@acm.org, Erich.Keane@intel.com

Contents
Summary of Changes .. 1

Introduction and Rationale ... 2

Proposed solution ... 3

Prior Art ... 5

ABI Considerations .. 5

Safety .. 6

Interaction with _Generic ... 6

Future Directions .. 6

Proposed Straw Polls .. 6

Straw Poll Results .. 7

Proposed Wording .. 7

Acknowledgements ... 10

References .. 10

Summary of Changes
N2763

• Removed alternative wording section.

• Editorial fix to 6.2.5p4 for use of “signed”.

• Added straw poll results.

N2709

• Corrected the integer conversion ranks and added addition explanation of intent to the prose.

mailto:Tommy.Hoffner@intel.com
mailto:Erich.Keane@intel.com

N2646

• Removed the _BitwidthOf, file IO, literal suffixes, and atomic functionality and added a Future

Directions section to the prose.

• Renamed _ExtInt to _BitInt.

• Corrected the changes to stdint.h to include extended integer types in addition to standard.

• Added alternate proposed wording for an annex, added prose to discuss it.

• Clarified that the types defined in <stdint.h> cannot be defined in terms of bit-precise integers.

• Minor editorial tweaks.

• Added straw poll questions.

N2590

• Significantly revised the proposed wording.

• Replaced previous inttypes.h macros with the %qN length modifier for I/O support.

• Removed the _STR_TO_EXTINT macro and supported oversized constants directly.

• Made the _Bitwidthof operator apply in constant expressions and apply to bit-fields.

• Added a helper macro for querying lock-free atomic support and a type mapping to an atomic

type name.

• Added a section about impacts on generic programming.

• Added more rationale and prior art information.

• Exempted _ExtInt from impacting the definition of [u]intmax_t and the exact-width integer

types.

N2534

• Proposed wording

N2501

• High level introduction to the topic without proposed wording, with corrections to the original

document.

N2472

• Original report.

Introduction and Rationale
We propose adding a family of integer types spelled as _BitInt(N), where N is an integral constant

expression representing the exact number of bits to be used to represent the type. In most application

code, the usual 8-, 16-, 32-, 64-bit width integer types provide satisfactory expressiveness for common

integer uses. However, there are use cases for integer types with a specific bit-width in application

domains, such as using 256-bit integer values in various cryptographic symmetric ciphers like AES, when

calculating SHA-256 hashes, representing a 24-bit color space, or when describing the layout of network

or serial protocols.

Further, in the case of FPGA hardware, using normal integer types for small value ranges where the full

bit-width isn't used is extremely wasteful and creates severe performance/space concerns. At the other

extreme, FPGA’s can support really wide integers, essentially providing arbitrary precision, and existing

FPGA applications make use of really large integers, for example up to 2031 bits. The clang

implementation of _BitInt provides support for bit widths up to 1024 (N.B., the clang feature is spelled

_ExtInt, which was an earlier proposed spelling for _BitInt).

An integer type with an explicit bit-width allows programmers to portably express their intent in code

more clearly. Today, the programmer must pick an integer datatype of the next larger size and manually

perform mask and shifting operations. However, this is error prone because integer widths vary from

platform to platform and exact-width types from stdint.h are optional, it is not always obvious from

code inspection when a mask or a shift operation is incorrect, implicit conversion can lead to surprising

behavior, and the resulting code is harder for static analyzers and optimizers to reason about. By

allowing the programmer to express the specific bit-width they need for their problem domain directly

from the type system, the programmer can write less code that is more likely to be correct and easier

for tooling and humans to reason about.

Proposed solution
A set of bit-precise integer types using the syntax _BitInt(N) where N is an integer that specifies the

number of bits that are used to represent the type, including the sign bit. The keyword _BitInt followed

by a parenthesized integer constant is a type specifier, thus it can be used in any place a type can;

whether it can be the type of a bit-field is implementation defined. When polled on whether WG14

would like something along these lines at the Oct 2020 meeting, the results were 16/1/4 (consensus).

The original proposal was to name the feature _ExtInt and refer to it in standards text as a “special

extended integer type”. However, during committee discussion, the feature was changed to be called a

“bit-precise integer type” and so the name _ExtInt was a misnomer. During the Nov 2020 meeting,

WG14 polled on whether to change the name and the results were 12/0/8 (consensus). The name has

been changed to _BitInt to more closely match with the notion of a bit-precise integer type.

At the Nov 2020 meeting, the question was raised about whether this feature should be surfaced via

macros within a header file instead of fully specified types in the language portion of the standard. The

question was not polled, but this version of the paper proposes alternative wording for an annex that

exposes the type via a new header file so that the committee can compare the approaches. (N.B., the

prose of this proposal has not been updated to reflect the annex wording beyond what’s found in this

paragraph and the alternative proposed wording.) The annex uses the macros _BitInt(N) and

_UnsignedBitInt(N), which expand to an implementation-defined type. However, our belief is that

exposing the type via macros makes a less compelling feature. Not having a portable name for the type

by hiding it behind macros makes it harder to write a C library with APIs using _BitInt that interoperates

with other languages that do not have a C preprocessor (which is why the annex requires the underlying

type to be implementation-defined rather than unspecified). Also, it introduces the novel concept of a

non-typedef integer datatype that is signed by default but that cannot be spelled with the unsigned

keyword. e.g., unsigned _BitInt(4) j; is a reasonable construct for a programmer to write given

the common prevalence of integer types like unsigned int, but will instead be a constraint violation.

Further, this approach may introduce a QoI challenge for implementations that have an existing

implementation of bit-precise integer types which is not spelled _BitInt, like Clang. It may seem

plausible that such an implementation could define the proposed macros as:

#define _BitInt(N) _ExtInt(N)

#define _UnsignedBitInt(N) unsigned _ExtInt(N)

However, if a user wrote a declaration like unsigned _BitInt(4) j;, it would expand to unsigned

_ExtInt(4) j; and appear as a valid declaration of an unsigned bit-precise integer that is

indistinguishable from use of the _UnsignedBitInt macro. Alternatively, if the macro was defined to

expand to signed _ExtInt(N) explicitly, the diagnostics produced by the implementation may talk

about duplicate type specifiers rather than use of an invalid type specifier as in:

https://godbolt.org/z/1nPEca. To conform to the C standard requirements for type specifiers, such an

implementation might be forced to introduce parser changes or introduce another type in the type

system to be able to properly diagnose the invalid use of the unsigned type specifier with the quality

expected for a production C compiler.

We are not proposing this feature as a Technical Specification because we believe there is sufficient

motivation for a mandatory, portable, exact bit-width integer datatype in the international standard.

Significant prior art exists for such a datatype and demonstrates that the industry sees a need in this

space, and we do not know what further information or experience would be gained by introducing the

feature in a technical specification.

A _BitInt can be explicitly declared as either signed or unsigned by using the signed/unsigned keywords.

If no sign specifier is used or if the signed keyword is used, the _BitInt type is a signed integer.

The N expression is an integer constant expression, which specifies the number of bits used to represent

the type, following normal integer representations for both signed and unsigned types. Both a signed

and unsigned _BitInt of the same N value will have the same number of bits in its representation. Many

architectures don’t have a way of representing non power-of-2 integers, but these architectures can

emulate these types using larger integers.

In order to be consistent with the C language and make the _BitInt types useful for their intended

purpose, _BitInt types follow the usual C standard integer conversion ranks. A _BitInt type has a greater

rank than any standard integer type with less width. However, they have lower rank than any of the

standard integer types with the same width, which means that a binary expression with a 32-bit int and

a _BitInt(32) will use int as a the common type. (cf 6.3.1.1 “The rank of any standard integer type

shall be greater than the rank of any extended integer type with the same width.”) When the widths of

the integer types are identical, a conversion to standard integer type is preferred over a _BitInt type.

However, to give more consistent semantics for existing extended integer types, the rank of an

extended integer type and bit-precise integer type of the same width is implementation-defined. Usual

arithmetic conversions also work the same, where the smaller ranked integer is converted to the larger.

When polled on whether the committee agrees with the chosen integer ranks at the Oct 2020 meeting,

the results were 7/2/10 (weak consensus).

There is one crucial exception to the C rules for integer promotion: _BitInt types are excepted from the

integer promotions. Operators typically will promote operands smaller than the width of an int to an int.

Doing these promotions would inflate the size of required hardware on some platforms, so _BitInt types

aren’t subject to the integer promotion rules. For example, in a binary expression involving a _BitInt(12)

https://godbolt.org/z/1nPEca

and an unsigned _BitInt(3), the usual arithmetic conversions would not promote either operand to an int

before determining the common type. Because one type is signed and one is unsigned and because the

signed type has greater rank than the unsigned type (due to the bit-widths of the types), the unsigned

_BitInt(3) will be converted to _BitInt(12) as the common type. We do not propose promoting to a

_BitInt wide enough to perform the operation without loss of precision because empirical evidence

suggests that mildly complex arithmetic expressions can quickly cause promotion to surprisingly wide

_BitInt types with poor performance characteristics. Further, integer promotions do not always yield

intuitive results. While a case like promoting an expression SomeBitInt12 * SomeBitInt8 to use ints in

order to avoid overflow may seem attractive, a case like SomeBitInt28 * SomeBitInt8 where integer

promotions would promote to a (potentially) 32-bit type that’s still insufficient to represent the resulting

value shows that this implicit conversion doesn’t always help. By exempting _BitInt from the integer

promotion rules, users are given a more expressive model that allows them to express the bit-precise

semantics of expressions in a way that is easier for tooling like static analyzers to reason about. When

polled on whether the committee is in favor of excepting _BitInt from the integer promotions, the

results were 14/0/6 (consensus).

Prior Art
Intel has introduced this functionality in our FPGA targeting compilers; the High Level Synthesis (HLS)

compiler and FPGA OpenCL compiler under the name “Arbitrary Precision Integer” (ap_int for short).

See References section below for details about these compilers. This feature has been extremely useful

and effective for our users, permitting them to optimize their storage and operation space on an

architecture where both can be extremely expensive. The Intel Compilers for the Intel FPGA have many

users that rely on the ap_int type to achieve efficient programs on a daily basis.

The ac_int type is another demonstration of prior art as a de facto standard for bit-precise integer types

in C++ and was originally developed by Mentor Graphics:

https://github.com/hlslibs/ac_types/blob/master/pdfdocs/ac_datatypes_ref.pdf.

Another implementation of this feature, implemented from scratch, is available in Intel’s oneAPI

product: https://software.intel.com/en-us/oneapi.

_BitInt has been implemented directly in the Clang 11 release as a language extension, spelled _ExtInt:

https://clang.llvm.org/docs/LanguageExtensions.html#extended-integer-types.

The XiLinx FPGA compiler for HLS also provides users a similar solution: a C++ “arbitrary precision”

integer type so that solutions can be optimized. Note that the naming scheme for C types builds the

integer width into the type name, a la int9, and for XiLinx the maximum width is limited to 1024 bits.

More information about this implementation can be found at:

https://www.xilinx.com/html_docs/xilinx2020_2/vitis_doc/integer_types.html

ABI Considerations
 _BitInt(N) types align with existing calling conventions. They have the same size and alignment as the

smallest basic type that can contain them. Types that are larger than __int64_t are conceptually treated

as struct of register size chunks. The number of chunks is the smallest number that can contain the type.

https://github.com/hlslibs/ac_types/blob/master/pdfdocs/ac_datatypes_ref.pdf
https://software.intel.com/en-us/oneapi
https://clang.llvm.org/docs/LanguageExtensions.html#extended-integer-types

With the Clang implementation on Intel64 platforms, _BitInt types are bit-aligned to the next greatest

power-of-2 up to 64 bits: the bit alignment A is min(64, next power-of-2(>=N)). The size of these types is

the smallest multiple of the alignment greater than or equal to N. Formally, let M be the smallest integer

such that A*M >= N. The size of these types for the purposes of layout and sizeof is the number of bits

aligned to this calculated alignment, A*M. This permits the use of these types in allocated arrays using

the common sizeof(Array)/sizeof(ElementType) pattern. The authors will discuss the ABI requirements

with the different ABI groups.

Safety
Overflow occurs when a value exceeds the allowable range of a given data type. For example,

(_BitInt(3))7 + (_BitInt(3))2 overflows, and the result is undefined as with other signed

integer types. To avoid the overflow, the operation type can be widened to 4 bits by casting one of the

operands to _BitInt(4). As with other unsigned integer types, overflow of an unsigned _BitInt is well-

defined and the value wraps around with twos complement semantics.

Interaction with _Generic
_BitInt(N) is a distinct type from _BitInt(M) when N != M, which means that use within a generic

selection expression requires the developer to name the exact bit-width they would like to match. This

could feel like a “hole” in the generic programming capabilities of C because it does not provide a direct

way to match the entire family of _BitInt types. However, supporting the ability to have a single

association that matches any size _BitInt is unlikely to meet the user's expectations because C does not

support a way to write type generic statements or function declarations to match the actual type.

We believe that any improvements to generic programming should be explored as an orthogonal topic

to the introduction of _BitInt. The proposed behavior gives a defensible model within generic selection

expressions that should be familiar to C programmers who write generic function interfaces in that

_BitInt(32) being distinct from _BitInt(31) should be no more difficult to understand than int and long int

being unique types.

Future Directions
Once the committee is content with the basic functionality of the bit-precise integer type, we intend to

introduce proposals to extend or polish the feature. For reference, we plan to propose the following

extensions to this functionality:

• Adding a format specifier so that a bit-precise integer can be used directly with the fprintf

and fscanf family of functions.

• Adding atomic support for atomic bit-precise integers.

• Adding the _BitwidthOf unary operator to query the width (rather than size) of an integer.

• Adding literal suffixes to form integer constants with a bit-precise type.

Proposed Straw Polls
We would like to see bit-precise integers added into C23 with sufficient time for subsequent, related

proposals to make progress. To that end, we’d like to poll adopting one of the two wording approaches

(with any necessary minor wording corrections being applied after the meeting).

Does WG14 wish to adopt N2646, proposed wording alternative one, into C2x?

Does WG14 wish to adopt N2646, proposed wording alternative two, into C2x?

If neither of the polls gains consensus for adoption, we would like WG14 to pick a preferred wording

approach to reduce the editing burden on subsequent revisions of the paper.

Does WG14 prefer the specification approach taken in wording alternative one from N2646?

(For the above poll, a Yes vote is support for something along the lines of wording alternative one and a

No vote is support for something along the lines of wording alternative two.)

Straw Poll Results
At the June 2021 virtual meeting, a straw poll was taken; does WG14 wish to adopt N2709, wording

alternative one, into C23: 14/2/5 (consensus). This paper only makes editorial changes requested by the

committee and removes the alternative wording proposal for clarity.

Proposed Wording
The wording proposed is a diff from WG14 N2573. Green text is new text, while red text is deleted text.

Modify 5.2.4.2.1p1 (add to the end of the list):

— width for an object of type _BitInt or unsigned _BitInt
BITINT_MAXWIDTH /* see below */

The macro BITINT_MAXWIDTH represents the maximum width N supported in the declaration

of a bit-precise integer type (6.2.5) in the type specifier _BitInt(N). The value

BITINT_MAXWIDTH shall expand to a value that is greater than or equal to the value of

ULLONG_WIDTH.

Modify 6.2.5p4: Drafting note: this moves the existing text into a new paragraph.

There are five standard signed integer types, designated as signed char, short int, int, long int, and long long

int. (These and other types may be designated in several additional ways, as described in 6.7.2.) There

may also be implementation-defined extended signed integer types.N) The standard and extended

signed integer types are collectively called signed integer types.M)

Insert a new paragraph immediately after 6.2.5p4: Drafting note: the footnotes in the new paragraph

are the same as the ones from the preceding paragraph.

A bit-precise signed integer type is designated as _BitInt(N) where N is an integer constant

expression that specifies the number of bits that are used to represent the type, including the

sign bit. Each value of N designates a distinct type. [Footnote: Thus, _BitInt(3) is not the same

type as _BitInt(4).] There may also be implementation-defined extended signed integer types.41)

The standard signed integer types, bit-precise signed integer types, and extended signed integer

types are collectively called signed integer types.42)

Modify footnotes 41 and 42, respectively:

41) Therefore, aAny statement in this document about signed integer types also applies to the

bit-precise signed integer types and the extended signed integer types, unless otherwise noted.

42) Therefore, aAny statement in this document about unsigned integer types also applies to

the bit-precise unsigned integer types and the extended unsigned integer types, unless

otherwise noted.

Modify the existing 6.2.5p6:

For each of the signed integer types, there is a corresponding (but different) unsigned integer

type (designated with the keyword unsigned) that uses the same amount of storage (including

sign information) and has the same alignment requirements. The type _Bool and the unsigned

integer types that correspond to the standard signed integer types are the standard unsigned

integer types. The unsigned integer types that correspond to the bit-precise signed integer types

are the bit-precise unsigned integer types. The unsigned integer types that correspond to the

extended signed integer types are the extended unsigned integer types. The standard unsigned

integer types, bit-precise unsigned integer types, and extended unsigned integer types are

collectively called unsigned integer types.

Modify the existing 6.2.5p7:

The standard signed integer types and standard unsigned integer types are collectively called

the standard integer types; the bit-precise signed integer types and bit-precise unsigned integer

types are collectively called the bit-precise integer types; the extended signed integer types and

extended unsigned integer types are collectively called the extended integer types.

Modify 6.3.1.1p1:

…

— The rank of long long int shall be greater than the rank of long int, which shall be

greater than the rank of int, which shall be greater than the rank of short int, which shall be

greater than the rank of signed char.

— The rank of a bit-precise signed integer type shall be greater than the rank of any standard

integer type with less width or any bit-precise integer type with less width.

— The rank of any unsigned integer type shall equal the rank of the corresponding signed

integer type, if any.

— The rank of any standard integer type shall be greater than the rank of any extended integer

type with the same width or bit-precise integer type with the same width.

— The rank of any bit-precise integer type relative to an extended integer type of the same

width is implementation-defined.

…

Modify 6.3.1.1p2:

The following may be used in an expression wherever an int or unsigned int may be used:

 — An object or expression with an integer type (other than int or unsigned int) whose integer

conversion rank is less than or equal to the rank of int and unsigned int.

 — A bit-field of type _Bool, int, signed int, or unsigned int.

If the original type is not a bit-precise integer type (6.2.5) and ifIf an int can represent all values of
the original type (as restricted by the width, for a bit-field), the value is converted to an int;
otherwise, it is converted to an unsigned int. These are called the integer promotions. 61) All other
types are unchanged by the integer promotions.

Insert a new example after 6.3.1.8p1:

EXAMPLE 1 One consequence of _BitInt being exempt from the integer promotion rules (6.3.1.1)
is that a _BitInt operand of a binary operator is not always promoted to an int or unsigned
int as part of the usual arithmetic conversions. Instead, a lower-ranked operand is converted to
the higher-rank operand type and the result of the operation is the higher-ranked type.

_BitInt(2) a2 = 1;

_BitInt(3) a3 = 2;

_BitInt(33) a33 = 1;

char c = 3;

a2 * a3 /* As part of the multiplication, a2 is converted to

 _BitInt(3) and the result type is _BitInt(3). */

a2 * c /* As part of the multiplication, c is promoted to int,

 a2 is converted to int and the result type is int. */

a33 * c /* As part of the multiplication, c is promoted to int,

 then converted to _BitInt(33) and the result type

 is _BitInt(33). */

void func(_BitInt(8) a1, _BitInt(24) a2) {

 /* Cast one of the operands to 32-bits to guarantee the

 result of the multiplication can contain all possible

 values. */

 _BitInt(32) a3 = a1 * (_BitInt(32))a2;

}

Modify 6.4.1p1 to add a new keyword:

_BitInt

Modify 6.7.2p1 to add a new entry to the type-specifier list:

_BitInt (constant-expression)

Modify 6.7.2p2 to add two new items to the list immediately below unsigned long long:

— _BitInt(constant-expression), or signed _BitInt(constant-expression)

— unsigned _BitInt(constant-expression)

Insert a new paragraph after 6.7.2p3 to the constraints section:

The parenthesized constant expression that follows the _BitInt keyword shall be an integer

constant expression N that specifies the width (6.2.6.2) of the type. The value of N for

unsigned _BitInt shall be greater than or equal to 1. The value of N for _BitInt shall be

greater than or equal to 2. The value of N shall be less than or equal to the value of

BITINT_MAXWIDTH (see 5.2.4.2.1).

Modify 7.20p4:

For each type described herein that the implementation provides,284) <stdint.h> shall declare

that typedef name and define the associated macros. Conversely, for each type described herein

that the implementation does not provide, <stdint.h> shall not declare that typedef name

nor shall it define the associated macros. An implementation shall provide those types described

as "required", but need not provide any of the others (described as "optional"). None of the

types shall be defined as a synonym for a bit-precise integer type.

Modify 7.20.1.1p3:

These types are optional. However, if an implementation provides standard or extended integer

types with widths of 8, 16, 32, or 64 bits, and no padding bits, it shall define the corresponding

typedef names.

Modify Annex E p2, Adding a new line below ULLONG_WIDTH:

#define BITINT_MAXWIDTH 64 // ULLONG_WIDTH

Acknowledgements
The authors would like to recognize the following people for their help with this work: Jens Gustedt,

JeanHeyd Meneide, Joseph S. Myers, Richard Smith, and Martin Uecker.

References
1. The HLS compiler:

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-

compiler.html refer to "Arbitrary Precision Integer"

2. The OpenCL FPGA compiler:

https://www.intel.com/content/www/us/en/software/programmable/sdk-for-

opencl/overview.html

3. The ac_int datatype:

https://github.com/hlslibs/ac_types/blob/master/pdfdocs/ac_datatypes_ref.pdf

4. The current clang review: https://reviews.llvm.org/D73967

5. https://reviews.llvm.org/D59105 An earlier version of this feature was proposed for acceptance

into clang/llvm, the code review is here.

6. The XiLinx HLS compiler arbitrary precision data types

https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-

hls.pdf

7. The bitWidth type property in swift:

https://developer.apple.com/documentation/swift/int/2885648-bitwidth

https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://www.intel.com/content/www/us/en/software/programmable/sdk-for-opencl/overview.html
https://github.com/hlslibs/ac_types/blob/master/pdfdocs/ac_datatypes_ref.pdf
https://reviews.llvm.org/D73967
https://reviews.llvm.org/D59105
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://www.xilinx.com/support/documentation/sw_manuals/ug998-vivado-intro-fpga-design-hls.pdf
https://developer.apple.com/documentation/swift/int/2885648-bitwidth

